Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Steroids ; 203: 109352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128896

ABSTRACT

Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1ß, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1ß and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.


Subject(s)
Anabolic Agents , Resistance Training , Humans , Rats , Female , Animals , Testosterone , Anabolic Agents/pharmacology , Neuroinflammatory Diseases , Testosterone Congeners/pharmacology , Brain
2.
Neurotoxicology ; 99: 217-225, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890558

ABSTRACT

Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1ß, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.


Subject(s)
Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/toxicity , 5'-Nucleotidase/metabolism , Neuroinflammatory Diseases , Hippocampus/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Exercise , Caspases/metabolism , Receptors, Purinergic P2X7/metabolism
3.
J Toxicol Environ Health A ; 86(17): 632-652, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37434435

ABSTRACT

Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.


Subject(s)
Melanoma , Solanaceae , Humans , Antioxidants/pharmacology , Water , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Melanoma/drug therapy , Cell Proliferation
4.
Mol Cell Endocrinol ; 563: 111852, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36657632

ABSTRACT

Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.


Subject(s)
Diabetes Mellitus, Type 1 , Metformin , Rats , Animals , Cholecalciferol , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , 5'-Nucleotidase/metabolism , Metformin/pharmacology , Adenosine/pharmacology
5.
Parasitol Res ; 122(1): 77-84, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36282319

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, and its congenital transmission is of paramount concern. During embryonic development, infection with the parasite causes irreversible damage to the still-forming fetus's central nervous system (CNS). In the pathogenesis of neurotoxoplasmosis, purinergic receptors prejudice neuroprotection, neuroinflammation, and activation of microbicide mechanisms against the parasitic vacuole. This study used curcumin as a treatment for neural precursor cells (NPCs) infected with T. gondii. The congenital toxoplasmosis induction consisted of maternal infection with the VEG strain, and NPCs were obtained from the telencephalon of mouse embryos. Curcumin at increasing concentrations was administered in vitro to analyze NPC metabolic activity, cell number, and size, as well as neurogliogenesis, proving to be effective in recovering the size of infected NPCs. Curcumin partially re-established impaired neurogenesis. Purinergic A1, A2A, and P2X7 receptors may be related to neuroprotection, neuroinflammatory control, and activation of mechanisms for inducing the parasite's death. ERK 1/2 was highly expressed in infected cells, while its expression rates decreased after the addition of the treatment, highlighting the possible anti-inflammatory action of curcumin. These findings suggest that curcumin treats neurological perturbations induced by toxoplasmosis.


Subject(s)
Curcumin , Neural Stem Cells , Toxoplasma , Toxoplasmosis, Cerebral , Toxoplasmosis, Congenital , Female , Pregnancy , Animals , Mice , Toxoplasma/physiology , Curcumin/pharmacology , Toxoplasmosis, Congenital/parasitology
6.
Drug Chem Toxicol ; 46(1): 155-165, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34930069

ABSTRACT

Curcumin is an active polyphenol substance found in the highest concentrations in the roots of Curcuma longa. Its health benefits have led to recent increases in the consumption of curcumin. It has anti-inflammatory and antioxidant activities and is a potent neuroprotective against diseases of the brain. Nevertheless, its low bioavailability and its relative difficulty crossing the blood-brain barrier limit curcumin's use for these purposes. Curcumin-loaded nanoparticles may be an effective treatment for several diseases although there is a paucity of studies reporting its safety in the central nervous system (CNS). Therefore, this study aimed to identify non-neurotoxic concentrations of free curcumin and two nanoformulations of curcumin. Cell lines BV-2 and SH-SY5Y, both originating from the CNS, were evaluated after 24, 48, and 72 h of treatment with free curcumin and nanocapsules We measured viability, proliferation, and dsDNA levels. We measured levels of reactive oxygen species and nitric oxide as proxies for oxidative stress in culture supernatants. We found that free curcumin was toxic at 10 and 20 µM, principally at 72 h. Nanoformulations were more neurotoxic than the free form. Safe concentrations of free curcumin are between 1-5 µM, and these concentrations were lower for nanoformulations. We determined the ideal concentrations of free curcumin and nanocapsules serving as a basis for studies of injuries that affect the CNS.


Subject(s)
Curcumin , Nanocapsules , Neuroblastoma , Humans , Curcumin/pharmacology , Nanocapsules/toxicity , Cell Line , Oxidative Stress
7.
Purinergic Signal ; 17(3): 493-502, 2021 09.
Article in English | MEDLINE | ID: mdl-34302569

ABSTRACT

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood-brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.


Subject(s)
Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Chagas Disease/metabolism , Nitroimidazoles/administration & dosage , Receptors, Purinergic/biosynthesis , Resveratrol/administration & dosage , Acute Disease , Animals , Antioxidants/administration & dosage , Cerebral Cortex/parasitology , Chagas Disease/drug therapy , Female , Gene Expression , Immunosuppressive Agents/administration & dosage , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology , Receptors, Purinergic/genetics
8.
Microb Pathog ; 153: 104800, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33609651

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, infecting the heart, intestines and liver tissues. There is growing evidence that oxidative stress, defined as a persistent imbalance between highly oxidative compounds and antioxidant defenses, is a marker of tissue inflammation; it is related to immune responses such as damage, as well as to strand breaks in DNA contributing to disease progression. Antioxidant agents help mitigate the damage caused by inflammation, preventing or slowing damage to cells caused by free radicals. In this sense, resveratrol (RSV) is an important polyphenol that demonstrates antioxidant effects. It reverses damage caused by several infectious diseases. The aim of the present study was to determine whether treatment with RSV would prevent or minimize oxidative damage caused by T. cruzi. The animals were divided into four groups (n = 5): A) control; B) control + RSV; C) infected and D) infected + RSV. The infected groups received 1 x 104 Y strain trypomastigotes via intraperitoneal injection; after confirmation of infection, the mice received RSV 100 mg/kg for seven days orally. On the 8th day post-infection, we collected liver tissue for analysis of oxidant/antioxidant status: superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST) activities, as well as reactive oxygen species (ROS), non-protein thiols (NPSH), thiols, carbonyl protein, thiobarbituric acid reactive substance (TBARS), and finally, the nitrite/nitrate ratio (NOx) levels were determined. The administration of RSV did not exert direct effect on parasitemia. The infection produced high levels of TBARS, NOx, and ROS levels in liver tissue, suggesting cellular injury with production of free radicals in animals infected by T. cruzi. RSV positively modulated SOD and aumenting GST activities enzymes in infected animals. Protein thiols levels in infected animals were lower than those of control. Taken together, the data suggest T. cruzi causes hepatic oxidative stress, and RSV 100 mg/kg for seven days it's dosen't seem minimized these negative effects in the acute phase of disease.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Antioxidants , Catalase/metabolism , Chagas Disease/drug therapy , Liver/metabolism , Mice , Oxidative Stress , Resveratrol , Superoxide Dismutase/metabolism
9.
Biomed Pharmacother ; 137: 111273, 2021 May.
Article in English | MEDLINE | ID: mdl-33524787

ABSTRACT

Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.


Subject(s)
Diabetes Mellitus/metabolism , Hypertension/metabolism , Purines/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2/metabolism , 5'-Nucleotidase/metabolism , Adenosine Deaminase/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Cell Communication , Diabetes Mellitus/epidemiology , Diabetes Mellitus/physiopathology , Diabetes Mellitus/therapy , Diet, Healthy , Exercise , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Hypertension/therapy , Purinergic P1 Receptor Antagonists/therapeutic use , Purinergic P2 Receptor Antagonists/therapeutic use , Signal Transduction
10.
Immunopharmacol Immunotoxicol ; 42(5): 509-520, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32838587

ABSTRACT

BACKGROUND: This study sought to assess the effect of hesperidin on serum inflammatory cytokines and oxidative damage in liver of complete Freund's adjuvant (CFA)-induced arthritic rats. METHOD: Fifty-six adult female Wistar rats (220-250 g) were acclimatized for two weeks. Intraplantar injection of CFA was done for the induction of arthritis and confirmed on the 14th day prior to oral administration of 40 and 80 mg/kg of hesperidin or dexamethasone for 45 days. RESULT: The result showed that treatment with both doses of hesperidin and dexamethasone in the joint of arthritic rats significantly (p < .05) diminished paw swelling/edema and arthritis score as well as enhanced latency in thermal hyperalgesia test. In addition, hesperidin treatment in arthritis rats showed significant (p < .01) improvement in red blood cells and platelets counts as well as hemoglobin and hematocrit compared to the arthritis control rat group. Furthermore, hesperidin treatment significantly (p < .05) reduced serum interferon gamma (IFN-γ) and interleukin-4 (IL-4) levels in arthritic rat. In addition, treatment with hesperidin significantly (p < .05) decreased the liver of thiobarbituric acid reactive species and reactive oxygen species levels but raised the levels of total and non-protein thiols of rat induced with CFA. The reduced activities of liver δ-aminolevulinate dehydratase, catalase, glutathione-S transferase in arthritic rats were significantly (p < .05) increased with hesperidin treatment in arthritic rats. This study suggests that hesperidin demonstrated an anti-arthritic effect via modulation of serum IFN-γ and IL-4 levels as well as protection against oxidative damage. CONCLUSION: Hence, hesperidin could be a potential immune-modulatory, anti-inflammatory and anti-oxidant agent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Arthritis, Experimental/drug therapy , Hesperidin/pharmacology , Inflammation Mediators/blood , Interferon-gamma/blood , Interleukin-4/blood , Liver/drug effects , Oxidative Stress/drug effects , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Catalase/metabolism , Female , Freund's Adjuvant , Glutathione Transferase/metabolism , Liver/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
11.
J Cell Biochem ; 120(3): 3232-3242, 2019 03.
Article in English | MEDLINE | ID: mdl-30230598

ABSTRACT

Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1ß gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.


Subject(s)
Lipopolysaccharides/toxicity , Physical Conditioning, Animal/physiology , Sepsis/chemically induced , Sepsis/prevention & control , Animals , Antioxidants/metabolism , Catalase/metabolism , Lipid Peroxidation/drug effects , Lung/drug effects , Lung/metabolism , Male , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sepsis/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Microb Pathog ; 104: 190-195, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28126664

ABSTRACT

Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans.


Subject(s)
Antifungal Agents/analysis , Antifungal Agents/pharmacology , Bacteria/drug effects , Carya/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Yeasts/drug effects , Antifungal Agents/isolation & purification , Chromatography, High Pressure Liquid , Flavonoids/analysis , Flavonoids/isolation & purification , Flavonoids/pharmacology , Hydroxybenzoates/analysis , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Microbial Sensitivity Tests , Phytochemicals/isolation & purification , Plant Leaves/chemistry , Tannins/analysis , Tannins/isolation & purification , Tannins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...